Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.13.338038

ABSTRACT

I performed whole-genome sequencing on SARS-CoV-2 collected from COVID-19 samples at Mayo Clinic Rochester in mid-April, 2020, generated 85 consensus genome sequences and compared them to other genome sequences collected worldwide. I proposed a novel illustrating method using a 2D map to display populations of co-occurring nucleotide variants for intra- and inter- viral clades. This method is highly advantageous for the new era of big-data when high-throughput sequencing is becoming readily available. Using this method, I revealed the emergence of inter-clade hybrid SARS-CoV-2 lineages that are potentially caused by homologous genetic recombination.


Subject(s)
COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.13.337584

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a severe acute respiratory syndrome (SARS) caused by a virus known as SARS-Coronavirus 2 (SARS-CoV2). Without a targeted-medicine, this disease has been causing a massive humanitarian crisis not only in terms of mortality, but also imposing a lasting damage to social life and economic progress of humankind. Therefore, an immediate therapeutic strategy needs to be intervened to mitigate this global crisis. Here, we report a novel KepTide(TM) (Knock-End Peptide) therapy that nullifies SARS-CoV2 infection. SARS-CoV2 employs its surface glycoprotein spike (S-glycoprotein) to interact with angiotensin converting enzyme-2 (ACE-2) receptor for its infection in host cells. Based on our in-silico-based homology modeling study validated with a recent X-ray crystallographic structure (PDB ID:6M0J), we have identified that a conserved motif of S-glycoprotein that intimately engages multiple hydrogen-bond (H-bond) interactions with ACE-2 enzyme. Accordingly, we designed a peptide, termed as ACIS (ACE-2 Inhibitory motif of Spike), that displayed significant affinity towards ACE-2 enzyme as confirmed by biochemical assays such as BLItz and fluorescence polarization assays. Interestingly, more than one biochemical modifications were adopted in ACIS in order to enhance the inhibitory action of ACIS and hence called as KEpTide(TM). Consequently, a monolayer invasion assay, plaque assay and dual immunofluorescence analysis further revealed that KEpTide(TM) efficiently mitigated the infection of SARS-CoV2 in vitro in VERO E6 cells. Finally, evaluating the relative abundance of ACIS in lungs and the potential side-effects in vivo in mice, our current study discovers a novel KepTideTM therapy that is safe, stable, and robust to attenuate the infection of SARS-CoV2 virus if administered intranasally.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.14.338558

ABSTRACT

The coronavirus disease 2019 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an ongoing global public crisis. Although viral RNA modification has been reported based on the transcriptome architecture, the types and functions of RNA modification are still unknown. In this study, we evaluated the roles of RNA N6-methyladenosine (m6A) modification in SARS-CoV-2. Our methylated RNA immunoprecipitation sequencing (MeRIP-Seq) analysis showed that SARS-CoV-2 RNA contained m6A modification. Moreover, SARS-CoV-2 infection not only increased the expression of methyltransferase-like 3 (METTL3) but also altered its distribution. Modification of METTL3 expression by short hairpin RNA or plasmid transfection for knockdown or overexpression, respectively, affected viral replication. Furthermore, the viral key protein RdRp interacted with METTL3, and METTL3 was distributed in both the nucleus and cytoplasm in the presence of RdRp. RdRp appeared to modulate the sumoylation and ubiquitination of METTL3 via an unknown mechanism. Taken together, our findings demonstrated that the host m6A modification complex interacted with viral proteins to modulate SARS-CoV-2 replication.


Subject(s)
Coronavirus Infections , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL